University of Strasbourg, ICube Labroratoy (CNRS)
Abstract: This seminar will give an overview of three different topics currently investigated in the Materials for electronic and photovoltaic devices team (MaCEPV) of ICube laboratory.
Downshifting and downconversion are advanced concepts for solar cells enabling a better match between the solar cells and the solar spectrum. It consists in the conversion of one ultraviolet photon into one (downshifting) or two (downconversion) photons in the visible or near-infrared.
[a] Photon Converters for Photovoltaics, A. Nonat, T. Fix, in Advanced micro- and nanomaterials for photovoltaics, Elsevier 2019, ISBN: 978-0-12-814501-2
Our team has been developing emergent oxide materials as absorbers for solar cells. In particular, we focused in ferroelectric oxide solar cells where no pn junction is necessary and the separation of electron hole pairs is enabled by the ferroelectric polarization of the absorber.
[b] R. Hoye*, J. Hidalgo, R. Jagt, J.-P. Correa-Baena, T. Fix*, J. MacManus-Driscoll*, Advanced Energy Materials, 2100499, pages 1-59 (2021)
Silicon clathrates are exotic forms of silicon, forming cages, that present the advantage of a direct and adjustable bandgap. Our team is one of the three actors in the world producing such films.
[c] T. Fix, R. Vollondat, A. Ameur, S. Roques, J.-L. Rehspringer, C. Chevalier, D. Muller, and A. Slaoui, J. Phys. Chem. C 124, 14972–14977 (2020)
All lectures in Hill Hall 202 unless otherwise specified